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We discuss the geometric characterization of a subset K of a normed linear space
via continuity conditions on the metric projection onto K. The geometric properties
considered include convexity, tubularity, and polyhedral structure. The continuity
conditions utilized include semicontinuity, generalized strong uniqueness and the
non-triviality of the derived mapping. In finite-dimensional space with the uniform
norm we show that convexity is equivalent to rotation-invariant almost convexity
and we characterize those sets every rotation of which has continuous metric pro-
jection. We show that polyhedral structure underlies generalized strong uniqueness
of the metric projection. � 1997 Academic Press, Inc.

1. INTRODUCTION

Suppose (X, & }&) is a normed linear space and K is a closed subset of X.
Let dist(x, K ) :=inf[&x& y& : y # K ] for x # X. The metric projection from
X onto K is the set-valued mapping 6K defined by

6K (x) :=[u # K : &x&u&=dist(x, K )],
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i.e., 6K (x) is the set of best approximations to x from K. If 6K (x){< for
all x # X we say that K is proximinal and if 6K (x) is a singleton for all
x # X we say that K is a Chebyshev set. The characterization of the con-
vexity of K in terms of the metric projection has attracted considerable
interest ever since Bunt [11] proved that every Chebyshev subset of a finite
dimensional Hilbert space must be convex. Some other contributions to
this problem can be found in [25] and [26]. (See [14] for a brief survey.)
An important event in the study of the convexity of Chebyshev sets was the
publication of the following theorem by Vlasov [35].

Theorem 1. In a Banach space with rotund dual, every Chebyshev set
with continuous metric projection is convex.

Theorem 1 is an example of exploring the geometric structure of K via
the continuity of the metric projection. Other developments along this line
can be found in [1, 40, 38]. In particular, the assumption of continuity of
the metric projection can be replaced by much weaker conditions. For
example, Balaganskii proved that if K is a Chebyshev subset of a real
Hilbert space and the set of discontinuities of 6K is countable, then K is
convex [1]. Even though Johnson [24] constructed a nonconvex
Chebyshev set in a pre-Hilbert space (cf. also [23]), an open problem still
left is whether or not a Chebyshev set in a Hilbert space is convex. Since
it is well known that a closed convex set in a Hilbert space is a Chebyshev
set, this open problem is related to the following conjecture on the
geometric characterization of Chebyshev sets in a Hilbert space: a closed
subset K of a Hilbert space X is convex if and only if K is a Chebyshev set
(i.e., 6K (x) is a singleton for every x # X). By Bunt's result [11], this con-
jecture is true if X is finite-dimensional. However, outside the Hilbert space
setting, the focus of research was on geometric consequences of various
continuity conditions on the metric projection 6K (cf. [38]). In this paper,
our goal is to characterize geometric structures of the approximation set K
by using various continuity conditions on the metric projection 6K .

The present paper is organized as follows. In Section 2, we first review
some consequences of Vlasov's proof of the following result: continuity of
a metric projection 6K implies almost convexity of K. This includes a very
weak continuity condition on 6K that guarantees the almost convexity of
K, as well as a characterization of a proximinal convex subset of a Banach
space with a rotund dual. Then we show that, in l�(n) (i.e., Rn with the
supremum norm), convexity is equivalent to rotation-invariant almost con-
vexity. As a consequence, we characterize those sets every rotation of which
has continuous metric projection, as well as rotation-invariant Chebyshev
subsets of l�(n). In the next two sections, we will show in two ways that
polyhedral structure underlies generalized strong uniqueness (or the weak
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sharp minimum property) of the metric projection. The main result in
Section 3 is that a closed convex subset K of l�(n) is boundedly polyhedral
if and only if the metric projection onto every rotation of K has the weak
sharp minimum property. In Section 4, we prove that the unit ball of a
finite-dimensional Banach space X is a polyhedron if and only if the metric
projection onto every subspace of X has the weak sharp minimum
property. Finally, in Section 5, we discuss possible extensions of the main
results established in this paper.

We will use the following notations and conventions. Following Brown
[9], we use 6$K (x) to denote the derived mapping of 6K defined by

6$K (x) :=[ y # 6K (x) : x # int[z : 6K (z) & U{<] whenever y # int(U)].

A vector x is in 6$K (x) if and only if for every sequence xk � x, z is a limit
point of a sequence of the form [wk], where wk # 6K (xk) for every natural
number k. The derived mapping can be used to characterize two continuity
concepts for set-valued mappings: lower semicontinuity and almost lower
semicontinuity. The metric projection 6K is said to be lower semicontinuous
if the set [x : 6K (x) & U{<] is open for every open set U and 6K is said
to be almost lower semicontinuous if, for every x # X and =>0.

.
U # O(x)

,
y # U

[6K ( y)+B(0, =)]{<,

where O(x) is the collection of all open neighborhoods of x in X. When K
is a proximinal subset of X, 6K is lower semicontinuous if and only if
6K (x)=6K (x) [9, 10, 15]; and when 6K (x) is a nonempty compact set
for every x # X, 6K is almost lower semicontinuous if and only if
6$K (x){< for all x # X [15]. The metric projection 6K is said to be upper
semicontinuous if the set [x : 6K (x) & F{<] is closed for every closed set
F and 6K is said to be continuous if 6K is both upper and lower semi-
continuous. A continuous selection S( } ) of 6K is a continuous mapping
from X to K such that S(x) # 6K (x) for every x # X. Let B[x, :], B(x, :),
and S[x, :] stand for, respectively, the closed ball, the open ball, and the
sphere with center x and radius :. When no ambiguity results, we will
denote B[0, 1] by B and S[0, 1] by S. A closed subset A of X is called
almost convex (or #-sun) [36, 38] if for every closed ball B1 :=B[x, :]
which does not intersect A and every :$>0 (no matter how large), there
exists an x$ # X such that the closed ball B[x$, :$] contains B1 but does not
intersect A. If A/X, we will denote the interior of A by int(A), and the
boundary of A by bdA. The space spanned by (respectively, the affine hull
of ) a set Y of vectors will be denoted by spanY (resp., aff Y ). If x, y # Rn,
the line segment joining x and y, [x+*( y&x) : * # [0, 1]], will be denoted
by [x, y]. By l�(n) we denote (Rn, & }&�), where &x&�=max1�i�n |x(i)|.
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If T : Rn � Rn is a linear transformation represented by an orthogonal
matrix with determinant equal to one, we will call T a rotation. Let R

consist of all rotations. For a closed subset K of Rn, R(K ) will denote the
collection of all rotations of K (i.e., A # R(K ) if and only if A=[Rx: x # K ]
for some R # R).

2. CONTINUITY AND CONVEXITY

In this section we first introduce a very weak continuity condition of 6K

that guarantees the almost convexity of K. As a consequence, we have a
characterization of proximinal convex subsets of a Banach space with a
rotund dual. Then we show that convexity is equivalent to rotation-
invariant almost convexity in l�(n). Also we will characterize those sets
which are convex and totally tubular in terms of the various continuities of
the metric projection. This removes from Theorem 4.6 in [22] the prior
assumption that the approximating set is convex. Finally, as a conse-
quence, we prove that a closed subset K of Rn is strictly convex if and only
if A is a Chebyshev subset of l�(n) for every A # R(K ).

The importance of almost convexity is its equivalence to convexity when
X has a rotund dual, as shown in the following lemma by Vlasov [35, 19].

Lemma 2 (Vlasov [35, 19]). In a normed linear space X, every closed
almost convex set is convex if and only if the dual space X* is rotund.

Based on Lemma 2, it suffices to show that K is an almost convex set in
order to prove the convexity of K in a Banach space with a rotund dual.
In [38, 19], Vlasov proved that the continuity of 6K implies the almost
convexity of K. Vlasov's proof has three clearly distinguishable steps: (i) the
continuity of the metric projection 6K implies that K is a $-sun, (ii) every
$-sun is #-sun, (iii) every #-sun is almost convex [38, 19]. Recall that a
nonempty closed set K is called a $-sun if for any x � K there exists a
sequence [zn] for which zn{x, zn � x,

d(zn , K )&d(x, K )
&zn&x&

� 1.

If for any x � K and any r>0 there exists a sequence [zn] such that
d(zn , K )&d(x, K ) � r, &zn&x&=r for all n, then K is called a #-sun.
However, in a Banach space, $-suns, #-suns, and almost convex sets are all
the same [38, 19]. We observe that Vlasov's proof still holds if the con-
tinuity of 6K is replaced by the much weaker continuity condition (1) for
6K . The following lemma can be derived from inequality (4.9), Lemma 4.2,
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and Theorem 3.3 in [38] (cf. also pages 238-241 in [19]). It has also been
proved in the manuscript [2]. For easy reference, we reproduce a proof by
Vlasov [38, 19] here. Since we are not interested in $-suns and #-suns the
three steps in Vlasov's proof are combined into one.

Lemma 3 (Vlasov [38, 19]). Suppose that for every x in the Banach
space X there exists an element p(x) # 6K (x) such that

lim
* � 0+

dist( p(x), 6K (x*))=0, (1)

where x* :=x+*(x& p(x)). Then K is almost convex.

Proof. First we claim that for x # X"K and *>0

dist(x* , K )�dist(x, K )+&x*&x& \1&
&p(x)&?(x*)&

&x& p(x)& + , (2)

where ?(x*) is any element in 6K (x*). To see that (2) is true, write
x=:x*+(1&:) p(x), where 0<:=1�(1+*)<1. Then

x& p(x)=:(x*& p(x)) and x*&x=
1&:

:
(x& p(x)) (3)

so &x& p(x)&�&x&?(x*)&�: &x*&?(x*)&+(1&: &p(x)&?(x*)&. There-
fore,

dist(x* , K )=&x*&?(x*)&

�
1
:

&x& p(x)&&
1&:

:
&p(x)&?(x*)&

=&x*& p(x)&&
&x*&x&

&x& p(x)&
&p(x)&?(x*)&

=&x& p(x)&+&x*&x& \1&
&p(x)&?(x*)&

&x& p(x)& + ,

where the second equality follows from (3). This proves that (2) is true.
Now we claim that, for every z # X"K, r>0, and _>1, there exists an

element x # X such that

dist(z, K )+
1
_

&z&x&�dist(x, K ) and &x&z&=r. (4)

To prove (4) we need the following Primitive Ekeland from [17] of the
Bishop�Phelps Theorem [3] (cf. also page 167 in [19]): Let (Y, d ) be a
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complete metric space and � be a proper but extended real lower semi-
continuous function on Y bounded below. Given =>0 and z # Y there
exists an x # Y such that

�(x)+= } d(x, z)��(z)

and

�( y)>�(x)&= } d(x, y) for all y # Y"[x].

We apply the above Primitive Ekeland Theorem to the complete metric
space B[z, r] and the continuous real function � on B[z, r] defined by

�( y) :=&dist( y, K ).

For ==1�_, there exists x # B[z, r] such that �(x)+= &z&x&��(z) so

dist(z, K )+
1
_

&z&x&�dist(x, K ) (5)

and �( y)>�(x)&= &y&x& whenever y{x and y # B[z, r] so

dist( y, K )<dist(x, K )+
1
_

&y&x& whenever y{x and &y&z&�r. (6)

Now from (5), dist(x, K )�dist(z, K )>0 so x � K. By (1), there exist
p(x) # 6K (x) and p(x*) # 6K (x*) for x* :=x+*(x& p(x)) such that

lim
* � 0+

&p(x*)& p(x)&=0. (7)

Therefore,

1=
&x*&x&
&x*&x&

�
&x*& p(x)&&&x& p(x)&

&x*&x&
�

&x*& p(x*)&&&x& p(x)&
&x*&x&

=
dist(x* , K )&dist(x, K )

&x*&x&
�1&

&p(x)& p(x*)&
&x& p(x)&

� 1, (8)

where the first inequality follows from the triangle inequality, the second
inequality and the second equality are derived from the definition of p(x*)
and p(x), the third inequality is (2), and the limit is a consequence of
(7). If &z&x&<r then x* # B[z, r]"[x] fo *>0 sufficiently small. By (6)
and (8),

1
_

� lim
* � 0+

dist(x* , K )&dist(x, K )
&x*&x&

=1,
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which contradicts the fact that _>1. Therefore, &z&x&=r. This completes
the proof of (4).

Finally we are ready to prove that K is almost convex. Let B[z, ;] be
a closed ball that does not intersect K. Given :>dist(z, K ), choose _>1
and r>0 so that

_(:&dist(z, K ))<r<:&;.

By (4), there exists x # X such that

r=&z&x&�_(dist(x, K )&dist(z, K ))

Then dist(x, K )>: so the ball B[x, :] does not intersect K ; and &z&x&<
:&; so B[z, ;]/B[x, :]. As a consequence, K is almost convex. K

For every convex proximinal subset K of X, (1) holds. As a consequence,
by Lemma 3 and Lemma 2 that essentially belong to Vlasov [38, 19], we
have the following characterization of convex proximinal sets in a Banach
space with rotund dual.

Theorem 4 (cf. Vlasov [38]). Let K be a proximinal subset of a Banach
space X with rotund dual. Then K is convex if and only if, for every x in X,
there exists an element p(x) # 6K (x) such that

lim
* � 0+

dist( p(x), 6K (x*))=0,

where x* :=x+*(x& p(x)).

Note that (1) is a much weaker condition than 6$K (x){< for all x # X.
As a consequence, we have the following corollary of Lemma 3.

Corollary 5. A closed subset K of a Banach space X is almost convex
if one of the following conditions holds

(i) 6$K (x){< for every x # X ;

(ii) 6K has a continuous selection;

(iii) 6K is lower semicontinuous;

(iv) 6K is continuous.

Remark. The condition (iv) was initially given by Vlasov (cf. Theorems 3.8
and 3.3 in [38], [6], and [36]). The condition (iii) was first introduced
by Blatter [5] but he referred the reader to [37] for a proof. See also
Theorems 4.15 and 3.3 in [38].
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By Lemma 2 the weakest possible condition that in general guarantees
the convexity of almost convex sets in a finite dimensional space is the
smoothness of the norm. The convexity of a set K/Rn is defined in terms
of line segments joining points in K, and so is invariant under affine map-
pings of Rn and independent of metric structure. However, the almost
convexity of K depends on the shape of the unit ball in (Rn, & }&) and hence
it depends on the norm. To connect this fact to the failure of rotation
invariance, consider in l�(2) the nonconvex set K :=[x, y] _ [ y, z], where
x :=(&2, 0), y :=(0, 1), and z :=(2, 0). Then K is not almost convex in
l�(2), but if K$ is the image of K under a counterclockwise rotation of R2

through the angle ?�4, then K$ is almost convex in l�(2). Thus, almost
convexity is not invariant under rotations. Another way of stating this
distinction is that convexity is a ``geometric'' property but almost convexity
is not. Our response to this problem is to explore the consequences of
assuming that every rotation of a set is almost convex. The idea underlying
the proof of Theorem 2 is that if there are distinct vectors y, z # K such that
the open interval ( y, z) does not intersect K, then there is no way to
indefinitely ``expand'' a ball in Rn"K (whose interior contains ( y+z)�2)
without running into y and z. The next lemma shows that there is a rotation,
B$, of B that has a ``good side'' parallel to ( y, z) such that any expansion
of B$ must eventually contain a ray parallel to ( y, z).

Lemma 6. Suppose that X=Rn and & }&=& }&� . Let z=(0, ..., 0, ;),
where ;>0. If 0 # B(xj , :j) for every positive integer j and :j � �, then
there is a positive integer j0 such that [z, &z] & int B(xj , :j){< for j� j0 .

Proof. Let xj=(x1
j , ..., xn

j ). Since 0 # B(xj , :j), we have

|xi
j |<:j , for i=1, ..., n.

Since :j � �, there exists j0 such that :j>2; for j� j0 . If xn
j �;, then

|xn
j &; |�|xn

j |<:j and &xj&z&<:j . In this case, z # B(xj , :j). If xn
j �;,

then

2;, when 0<xn
j ,

|xn
j +; |<{ ;, when &;�xn

j �0,

|xn
j |, when xn

j <&;.

Thus, |xn
j +; |<:j and &xj+z&<:j . In this case, &z # B(xj , :j). K

Theorem 7. Let K be a closed subset of l�(n). If A is almost convex for
every A # R(K ), then K is convex.
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Proof. Suppose that K is not convex. Then we may assume with no loss
of generality (rotating and translating if necessary), that there exists a
vector z :=(0, ..., 0, ;) # K such that the intersection of K with the interval
[z, &z] is the two-point set [z, &z]. Since K is boundedly compact, there
exists an : # (0, ;) such that B[0, :] # K=<, so Lemma 6 implies that K
is not almost convex. This concludes the proof of Theorem 7. K

From Corollary 5(i) and Theorem 7 we obtain the following description
of convexity of K by using derived mappings.

Corollary 8. Let K be a closed subset of l�(n). If 6$A(x){< for
every x # Rn and every A # R(K ), then K is convex.

Remark. Since 6K (x) is a nonempty compact set, 6$A(x){< for every
x # X if and only if 6A is almost lower semicontinuous [15]. Thus, the
hypothesis ``6$A(x){<'' in Theorem 8 can be replaced by ``6A is almost
lower semicontinuous.''

The statement of the next result requires the definition of a totally
tubular set. We say that K/X is totally tubular if for all a # K, 0{v # X
and =>0, there exists a $>0 such that if y # K and &a+tv& y&<$
for some t # R then there exists an s # R such that y+sv # K and
&( y+sv)&a&<=. Since all norms on Rn are topologically equivalent, total
tubularity is independent of norm in Rn. Note also that total tubularity is
rotation-invariant in Rn. Thus, total tubularity is a norm-independent and
geometric concept in Rn. For convex sets, the total tubularity is actually
property (P), first introduced by Brown [8] in the study of continuity of
metric projections and later extended by Wegmann [39] and Blatter, et al.
[6]. Recall that a convex subset K of a normed linear space (X, & }&) is said
to have property (P) (with respect to the norm & }&) if for every x # k, z # X
with x+z # K, there exist positive numbers c and $ such that y+cz # K for
every y # K with &y&x&<$. In [22], it was shown that a closed convex
subset of Rn is totally tubular if and only if it has property (P). The proof
of Theorem 5.4 in [22] actually shows that total tubularity always implies
property (P) for any closed convex subset in a normed linear space X. In
fact, one can prove that property (P) also implies total tubularity for any
closed convex subset in a normed linear space. The concept of total tubular
convex subsets of Rn (or the convex sets with property (P)) was
rediscovered by Huotari, Legg, and Townsend [21] in their study of
convergence of the Po� lya algorithm (where the term ``cylindrical'' was used
in place of ``tubular''). The terminology ``total tubularity'' was first used in
[22], due to the fact the definition reflects the tubular structure of a set.
For a closed convex set, Huotari, Legg, and Townsend's definition of total
tubularity (or totally cylindrical property) was motivated by geometric
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intuition, while Brown's definition of total tubularity (or property (P)) was
from mathematical intuition in analysis. We prefer the terminology ``total
tubularity,'' since it has a geometric meaning that fits the objective of this
paper. Obviously, if K is not convex, then the total tubularity of K does not
necessarily imply that K has property (P) as shown by the following example.
Let

K :=[(x1 , x2) # Rn : x2
1+x2

2=1].

Then one can verify that K is totally tubular, but does not have property
(P) (for x=(0, &1) and z=(0, 2)).

Following Brown [8], we say that a norm & }& (on a linear space X ) is
totally tubular if its unit ball [x # X : &x&�1] is a totally tubular set.

In [22] it was shown that a convex set K/Rn is totally tubular if and
only if 6A is continuous for every A # R(K ). This along with Theorem 8
easily establishes the following.

Theorem 9. Suppose K is a closed subset of l�(n). Then K is a totally
tubular convex set if and only if for every A # R(K ), 6A is continuous.

Note that if K is a closed and strictly convex subset of Rn, then K is a
Chebyshev subset of l�(n). It is well-known that the metric projection 6K

is continuous if K is a Chebyshev subset of a finite-dimensional Banach
space. As a consequence of Theorem 9, if A is a Chebyshev subset of l�(n)
for every A # R(K ), then K is convex. If bdK contains a nontrivial line
segment, say [a, b] with a{b, then there is a supporting hyperplane H
of K that contains [a, b]. Let u be a unit vector normal to H such
that [a+*u : 0<*�1] & K=<. Let R be a rotation such that R(u)=
(1, 0, ..., 0). Then R(H ) is parallel to the coordinate plane [x : x(1)=0]
and 6R(K )(z)#R([a, b]) for z :=R(a)+(&R(a&b)&� , 0, ..., 0). This is
impossible, since R(K ) is a Chebyshev set. Therefore, if A is a Chebyshev
subset of l�(n) for every A # R(K ), then K is strictly convex. This provides a
metric characterization of strict convexity, and a geometric characterization
of rotation-invariant Chebyshev subsets of l�(n).

Theorem 10. Suppose that K is a closed subset of l�(n). Then K is
strictly convex if and only if A is a Chebyshev subset of l�(n) for every
A # R(K ).

3. WEAK SHARP MINIMA AND LOCAL
POLYHEDRAL STRUCTURE

A best approximation is, loosely speaking, strongly unique if the distance
from the approximatee to elements of the approximating set, in every ray
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emanating from the best approximation, grows at a linear rate. This
growth-of-distance notion is easily generalized to the context where there
may be more than one best approximation. In this section we will show
that local polyhedral structure underlies the linear growth of distance to a
fixed approximatee.

Suppose & }& is any norm on Rn. If x # Rn is fixed, define a function
Fx : Rn � R by Fx( y) :=&x& y&. Suppose that K/Rn is closed and convex.
Note that 6K (x) is the convex set of minima of the function Fx restricted
to K. We say that 6K (x) is a set of weak sharp minima for Fx relative to
K if there is an :>0 such that

&x& y&�dist(x, K )+: } dist( y, 6K (x))

for every y # K (cf. [12, 13, 16, 18, 20, 28, 29, 30, 31, 32, 33] for some
related research on strong uniqueness and weak sharp minima). We say
that the metric projection 6K has the weak sharp minimum property if
6K (x) is a set of weak sharp minima for every x # Rn. Note that if 6K (x)
is a singleton then it is a set of weak sharp minima for Fx relative to K if
and only if its one element is the strongly unique best & }& approximation to
x from K. Thus the weak sharp minimum property can be considered as a
kind of generalized strong uniqueness. See [13] for an introduction to
strong unicity. Note that by Cheney's argument [13] if 6K (x) is a set of
weak sharp minima for every x # Rn with : independent of x, then 6K is
Lipschitz continuous (see also [31, 33]).

A subset of Rn is called a polyhedron if it is the intersection of a finite
number of closed half-spaces. A set is called boundedly polyhedral if its
intersection with every bounded polyhedron is a polyhedron. In the discus-
sion of our first polyhedral-structure result we will abuse notation by writing
D(A) when we mean [Dv : v # A], where D is an n_n matrix and A/Rn.
We begin with two preparatory lemmas.

Lemma 11. Let K be a subset of l�(n). If 6A has the weak sharp mini-
mum property for all A # R(K ), then 6B also has the weak sharp minimum
property for B # Q(K ), where Q(K ) :=[Q(K )&z : Q is an orthogonal matrix
and z # Rn].

Proof. Let B=Q(K )&z # Q(K ). we consider the two cases: det(Q)=\1.
Suppose det(Q)=1. Then Q is a rotation. Let A :=Q(K ). Then it is easy

to verify that

dist(x, B)=dist(x+z, A),

6B(x)=6A(x+z)&z, (9)

dist(w, 6B(x))=dist(w+z, 6A(x+z)).
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For every w # B, we have w+z # A. Therefore by the weak sharp minimum
property of 6A there exists a positive constant # such that, for every w # B,

&x&w&=&(x+z)&(w+z)&

�dist(x+z, A)+# } dist(w+z, 6A(x+z)). (10)

It follows from (9) and (10) that &x&w&�dist(x, B)+# } dist(w, 6B(x)).
That is, 6B also has the weak sharp minimum property.

Suppose det(Q)=&1. Let D be the diagonal matrix whose i th diagonal
entry is &1 for i=1 and 1 for i�2. Then D represents the reflection about
the hyperplane x(1)=0. Since DQ is an orthogonal matrix with determinant
1, DQ is a rotation. Let B� :=D(B)#DQ(K )&Dz. By the proof in the case
det(Q)=1, 6B� has the weak sharp minimum property. Since the l�

distance is invariant under the reflection D, one can easily verify that

&Dx&=&x&,

dist(x, B)=dist(Dx, B� ),
(11)

D6B(x)=6B� (Dx),

dist(w, 6B(x))=dist(Dw, 6B� (x)).

If w # B then Dw # B� . By the weak sharp minimum property of 6B� , there
exists a positive constant # such that

&x&w&=&Dx&Dw&

�dist(Dx, B� )+# } dist(Dw, 6B� (x)) for w # B. (12)

Combining (11) and (12), we obtain the weak sharp minimum property
of 6B :

&x&w&�dist(x, B)+# } dist(w, 6B(x)) for w # B.

This concludes the proof of Lemma 11. K

Lemma 12. Let & }& be any norm on Rn. If a convex set K is not boundedly
polyhedral, then there exist z # K, u # S[0, 1] and a hyperplane H which
supports K at z such that

(i) z+tu # H for all t;

(ii) z+tu � K for t>0;
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(iii) for each positive integer k there exist vk # K and 0<tk<1 such
that

lim
k � �

&vk&(z+tk u)&
tk

=0.

Proof. We may suppose without loss of generality that 0 is in the
relative interior of K. By Theorem 4.7 in [27] there is a two dimensional
subspace P such that K* :=K & P is not boundedly polyhedral. Thus, K*
has a sequence [vk] of distinct extreme points which converges to, say, z.
For each natural number k, let tk :=&vk&z& and uk :=(vk&z)�tk . We
may assume without loss of generality that there exists a u # S[0, 1] such
that limk � �&uk&u&=0. Let L denote the line containing the vectors
[z+tu : t # R]. By the Separation Theorem, (11.3) in [34], there exists a
hyperplane H which contains L and supports K at z. It is easy to see that
(i), (ii) and (iii) hold. This concludes the proof of Lemma 12. K

Theorem 13. Suppose that K is a closed convex subset of l�(n). Then
the following are equivalent:

(i) For every A # R(K ), 6A has the weak sharp minimum property.

(ii) The set K is a convex boundedly polyhedral set.

Proof. Suppose (i) holds. If K is not boundedly polyhedral, then there
exist z, u, vk , tk and H satisfying (i), (ii) and (iii) of Lemma 12. Obviously
there exists an orthogonal matrix Q such that Q(H&z)=[x : x(n)=0],
Qu=e1 :=(1, 0, ..., 0) and K� :=Q(K&z)#Q(K )&Qz/[x : x(n)�0]. By
Lemma 11, 6K� has the weak sharp minimum property. Therefore, after
replacing K by K� , we may assume that

6K has the weak sharp minimum property;

0 # K/[x : x(n)�0];
(13)

te1 � K for t>0;

there exist vk # K and 0<tk<1 such that lim
k � �

&vk&tk e1&
tk

=0.

Let K0=K & [x : x(n)=0]. Since e1 � K0 , in the subspace [x : x(n)=0]
there exists a hyperplane H0 which supports K0 at 0 and separates the line
segment [0, e1] from K0 . That is, there exist a(1), ..., a(n&1) such that

K0/[x : a(1) x(1)+ } } } +a(n&1) x(n&1)�0] (14)
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and

e1 # [x : a(1) x(1)+ } } } +a(n&1) x(n&1)�0]. (15)

Note that (15) is equivalent to a(1)�0.
If (a(2), ..., a(n&1)){0, let

; :=� 1
n&2

:
n&1

i=2

[a(i)]2

and let Q be any orthogonal matrix such that Q(0, a(2), ..., a(n&1), 0)=
;(0, 1, ..., 1, 0) and (Qx)(i)=x(i) for i=1 or i=n. (Q represents an
orthogonal transformation in (0, x(2), ..., x(n&1), 0)-space.) Then, after
replacing K by Q(K ), (13) still holds; but (14) and (15) become the following
condition:

K0/[x : :x(1)+;(x(2)+ } } } +x(n&1))�0], (16)

where : :=a(1)�0. Note that ;�0. If (a(2), ..., a(n&1))=0, then (16)
holds with :=a(1)�0 and ;=0.

Now let x(i)=1 for 1�i�n. Then we claim that

dist(x, K )=1 and v*(1)=0 for every v* # 6K (x). (17)

In fact for every v* # 6K (x)

1=&x&=&x&0&�&x&v*&= max
1�i�n

|1&v*(i)|� max
1�i�n

(1&v*(i))�1,

since 0 # K and v(n)�0 for every v # K. Since dist(x, K )=1 and 0 # K,

v*(i)�0 for every 1�i�n&1. (18)

Since 6K (x)/K0 and ;�0, we have

:v*(1)�:v*(1)+;(v*(2)+ } } } +v*(n&1))�0 for v* # 6K (x). (19)

If :>0, by (18) and (19), v*(1)=0 for every v* # 6K (x). Otherwise :=0
and ;>0. By (18) and (19) we have v*(i)=0 for 2�i�n&1. Therefore
v*=v*(1) e1 . But te1 � K0 for every t>0. Hence we have v*(1)=0 in this
case also. This proves (17).

Finally, we are ready to derive the contradiction. By the weak sharp
minimum property of 6K there exists a positive constant # such that

&x&vk&�dist(x, K )+# } dist(vk , 6K (x)). (20)
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However,

&x&vk&�&x&tke1&+&vk&tke1&

=1+&vk&tk e1&=dist(x, K )+&vk&tke1& (21)

and by the triangle inequality and the definition of dist( } , } )

dist(vk , 6K (x))�dist(tk e1 , 6K (x))&&vk&tk e1&

� min
v* # 6K (x)

|tk&v*(1)|&&vk&tk e1&

=tk&&vk&tke1&. (22)

It follows from (20), (21), (22) and (13) that

#�
&x&vk&&dist(x, K )

dist(vk , 6K (x))
�

&vk&tke1 &
tk&&vk&tke1&

=
&vk&tke1 &�tk

1&&vk&tke1&�tk
� 0.

which is impossible. This contradiction shows that (i) implies (ii).
Conversely let x # Rn. If x � K, define

g( y) :=
&x& y&&dist(x, K )

dist( y, 6K (x))
.

Then g( y) is a continuous function on Rn"6K (x). Since 6K (x) is a bounded
set and lim&y& � � g( y)=1, there exists a positive constant * such that
6K (x)/[ y # Rn : &y&��*] and g( y)�1�2 whenever &y&��*. Thus,

&x& y&&dist(x, K )� 1
2 dist( y, 6K (x)) whenever &y&��*. (23)

If x # K, then we choose * such that 6K (x)/[ y # Rn : &y&��*]. In this
case, (23) also holds.

By the definition of convex boundedly polyhedral sets, K� :=[ y # K :
&y&��*] is a convex polyhedral set. It was proven in [31] that if K� is
polyhedral and & }& is a polyhedral norm then there exists a positive
constant # such that

&x& y&�dist(x, K� )+# } dist( y, 6K� (x)) for every y # K� .

It is easy to verify that 6K� (x)=6K (x) and dist(x, K )=dist(x, K� ), since
6K (x)/K� /K. Thus we actually have

&x& y&�dist(x, K )+# } dist( y, 6K (x)) for every y # K� .

This along with (23) proves that 6K has the weak sharp minimum prop-
erty. K
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Remark. Let K be the convex hull of [(n, n2) : n=0, 1, ...]/R2. Then
K is not a polyhedral set, but K is a boundedly polyhedral set. Therefore,
by Theorem 13, 6K has the weak sharp minimum property. The weak
sharp minimum property of 6A for A # R(K ) is characterized by the local
polyhedral structure of K.

4. WEAK SHARP MINIMA AND POLYHEDRAL NORM

We hope that the following theorem will contribute to the discussion of
approximation theoretic characterizations of geometric properties of the
norm itself. Recall Lemma 2, which characterizes smooth norms for
reflexive spaces. Bjo� rnestal [4] showed that in a uniformly convex Banach
space the order of strong unicity of the metric projection operator can be
written in terms of the inverse of the modulus of convexity. Brown [8]
proved that the metric projection onto every finite-dimensional subspace of
a normed linear space X is continuous if and only if X has a so-called (P)-
norm (i.e., the unit ball of X has property (P)). Note that a set K in a
finite-dimensional space has property (P) if and only if K is totally tubular
[22]. Therefore, when X is finite-dimensional, Brown's result can be
restated as follows. The metric projection onto every subspace of a finite-
dimensional normed linear space X is continuous if and only if the unit ball
of X is totally tubular. Huotari and Sahab [20] showed that in certain
cases the modulus of convexity of the norm is characterized in terms of the
order of strong unicity of the metric projection. All these results show that
there is a connection between the various continuity conditions of metric
projections and the geometric characteristics (or the ``shape'') of the unit
ball in a normed linear space. This raises the question, which we now
answer, about the geometric consequences of assuming that 6K has the
weak sharp minimum property for every subspace K of a finite-dimensional
normed linear space (Rn, & }&).

Theorem 14. For any given norm & }& on Rn, the following are equiv-
alent.

(i) The norm & }& is polyhedral (i.e., the unit ball in (Rn, & }&) is a
polyhedron).

(ii) For every subspace V of Rn, 6V has the weak sharp minimum
property.

(iii) For every one-dimensional subspace L of Rn, 6L has the weak
sharp minimum property.
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Proof. The implication that (i) O (ii) was proved by Deutsch and Li
[16] (cf. also [31]). The implication that (ii) O (iii) is trivial. Now we
prove that (iii) O (i) by contradiction.

Suppose that & }& is not polyhedral. Then the unit ball B is not boundedly
polyhedral. Applying Lemma 12 to K#B we obtain that there exist vk , z # B,
a unit vector u and a hyperplane H which supports B at z such that condi-
tions (i), (ii) and (iii) in Lemma 12 hold. Let L :=[tu : t # R]. Then L is
a one-dimensional subspace of Rn. We claim that 6L does not have the
weak sharp minimum property at z.

For every t, z&tu # H and H supports B at z. Thus &z&tu&�1 for t # R
and dist(z, L)=1. For t<0, z&tu # H"B; i.e., &z&tu&>1. Therefore
6L(z)/[tu : t�0]. Let yk :=&tku # L. Then

dist( yk , 6L(z))=inf[&yk&tu& : tu # 6L(z)]

�inf[&&tku&tu& : t�0]=tk . (24)

On the other hand,

&z& yk&=&z+tku&�&vk&+&vk&(z+tk u)&�1+&vk&(z+tku)&. (25)

It follows from the fact that dist(z, L)=1, (24), (25) and (iii) of Lemma 12
that

&z& yk&&dist(z, L)
dist( yk , 6L(z))

�
&vk&(z+tku)&

tk
� 0.

So 6L does not have the weak sharp minimum property at z. This contra-
diction proves Theorem 14. K

5. CONJECTURES AND EXAMPLES

After reading the first submitted version of this paper, the editor A. L.
Brown pointed out: ``The 2-norm & }&2 is invariant with respect to every
orthogonal transformation of Rn, but given another norm the orthogonal
transformations would seem to represent an arbitrary choice. If S : Rn � Rn

is an isomorphism (corresponding to a change of basis) and T is orthogonal
then S&1TS is equally a candidate for a rotation.'' In fact, geometric
characteristics such as convexity, total tubularity, and the polyhedral
property are invariant under affine transformations. For example, if K/Rn

is a convex (resp., totally tubular, polyhedral, boundedly polyhedral) set,
so is its affine image Q(K ) :=[Q(x) : x # K ], where Q is an affine mapping
from Rn to Rn. Let A be the collection of all affine mappings from Rn to
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Rn and A(K ) be the collection of all affine images of K (i.e., A # A(K ) if
and only if A=Q(K ) for some Q # A). Then Theorem 9 and Theorem 13
still hold if we replace R(K ) by any collection D such that R(K )/
D/A(K ). The emphasis of Theorem 9 and Theorem 13 is on the rela-
tionship between the rotation-invariant analytic behavior of K and its
geometric consequences. We believe that the main results in this paper can
be generalized as follows.

Conjecture 15. Let K be a closed subset of (Rn, & }&).

(i) If 6A is almost lower semicontinuous for every A # R(K ), then
K is convex.

(ii) Suppose that & }& is a totally tubular norm. Then 6A is
continuous for every A # R(K ) if and only if K is a totally tubular convex
set.

(iii) Suppose that & }& is a polyhedral norm (i.e., the unit ball is a
polyhedral set) and K is convex. Then 6A has the weak sharp minimum
property for every A # R(K ) if and only if K is a convex boundedly
polyhedral set.

(iv) Suppose that K is convex and is not a singleton. The metric
projection 6A has the weak sharp minimum property for every A # R(K )
if and only if & }& is a polyhedral norm and K is a convex boundedly
polyhedral set.

Our study leads us to believe that in (Rn, & }&1) a rotation-invariant
almost convex set might not be convex. (This issue will be addressed in a
future publication.) However the almost lower semicontinuity of 6A for
every A # R(K ) might imply that A is a sun for every A # R(K ), which in
turn might imply the convexity of K. (See [7] for the definition of sun.)
The foundation for Conjecture 15(ii) is the fact that if & }& is a totally
tubular norm and K is a convex totally tubular set then 6A is continuous
for every A # R(K ) (cf. [22]). It seems that our proof of Theorem 13 can
be modified to prove the ``only if'' part of Conjecture 15(iii).

Brown proved that if 6K is continuous for any subspace of Rn then & }&
is a totally tubular norm [8, 22]. Therefore the totally tubular norm
assumption in Conjecture 15(ii) is necessary. Theorem 14 shows that the
polyhedral norm assumption in Conjecture 15(iii) is also necessary. Note
that 6K is a contraction (i.e., Lipschitz continuous with Lipschitz constant 1)
for any closed convex subset K of a Hilbert space. Thus, the weak sharp
minimum property in Conjecture 15(iii) can not be weakened to the
Lipschitz continuity of 6K .

We conclude the paper with an example which shows that the condition
in Conjecture 15(ii) can't be generalized to the existence of continuous
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selections. We believe this example is well-known and may have been given
before without proof.

Example 16. There is a closed convex non-totally tubular subset K of
l�(3) such that 6A has a continuous metric selection for every A # R(K ).

Proof. Let C :=[(x(1), x(2), x(3)) : x(1)2+(x(2)&1)2=1, x(3)=0],
P :=(0, 1, 1), and Q :=(0, 0, &2); and let K be the convex hull of
C _ [P] _ [Q]. To see that K is not totally tubular let a :=Q,
v :=(0, 0, 1), and yk :=(- 1&(1�k&1)2, 1�k, 0).

Since L :=[(0, 0, &2), (0, 0, 0)] is the only line segment in bdK which is
parallel to a face of B, it must be that 6K (x) is either a singleton or a
closed subinterval of L. If # is a selection for 6K let #i (x) be the i-th coor-
dinate of #(x), i=1, 2, 3. Define # : R3 � K by requiring that #(x) be the
element of 6K (x) with #3(x)�y(3), y # 6K (x). If 6K (x)=[#(x)], then
clearly # is continuous at x, so we suppose that 6K (x)/L.

We will show that # is continuous at x by analyzing sequences converging
to x. Let [xj] be a sequence in R3 converging to x. Let y* be a limiting
point of [#(xj)]. By selecting a subsequence, we may assume that
limj #(xj)= y*.

Let $j :=dist(xj , K ) and $ :=dist(x, K ). Since dist(z, K ) is a continuous
function of z, $j � $ and y* # 6K (x). Thus

B[xj , $j] � B[x, $] (26)

and y*(i)=#i (x), i=1, 2.
Suppose J :=[ j : 6K (xj)/L] contains infinitely many indices. Then

6K (xj)=6L(xj) for j # J and it follows from Theorem 9 that

lim
j # J

6K (xj)=lim
j # J

6L(xj)=6L(x)=6K (x).

Thus #3(xj) � #3(x) and we are done.
Since y* # 6K (x)/L, y*(3)�0. If y*(3)=0, by the definition of #, we

have 0�#3(x)� y*(3)=0. As a consequence, #3(x)=0= y*(3) and
limj #(xj)=#(x).

Now suppose 6K (xj) & L=< for j large enough and y*(3)<0. Then
#3(xj)<0 for j large enough. Thus, there exists a positive integer j* such
that 6(xj)=[#(xj)] is a singleton and #3(xj)<0 for j� j*. Then B(xj , $j)
contains a point with third coordinate smaller than that of a point in K.
From the geometric construction of K, #3(xj)� y(3) for y # B[xj , $j]. By
(26) #3(x)�0 and #3(xj) � #3(x).

This proves that #( } ) is a continuous selection for 6K . If A=R(K ) #
R(K ) and bdA contains a line segment parallel to a face of B then we may
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construct a continuous selection for 6A as above by choosing the element
of 6K (x) nearest to R(C). K
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